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Abstract—This paper deals with a number of computer vision
techniques for the integration and interpretation of visual cues
in RGB and forward-look sonar images. To utilize a low-cost
GoPro stereo imaging system with dedicated water-proof housing
and an Oculus sonar, we perform camera calibration by ray
tracing to account for the impact of refraction at the housing
glass ports, and calculate the relative poses of all three imaging
systems. Utilizing the data for our calibrated system, we describe
and assess certain 3-D reconstruction methods to determine the
relative position of various scene targets for collision avoidance, to
generate 3-D object models, and to enhance RGB images by haze
removal. Experiments with the real images of various targets in a
pool and a water tank under both good visibility and turbidity are
presented to demonstrate some advantages in the integration of
multi-modal visual cues. Collectively, these methods are targeted
for the realization of capabilities that enhance marine robotics
perception and autonomy in near-seabed operations.

Key words: Forward-look (FL) Sonar; Opti-Acoustic Stereo
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Reconstruction.

I. INTRODUCTION

Underwater robot perception plays a crucial role in a
range of underwater scientific and commercial explorations;
archaeology [38]- [7], coral reef management [13], [23],
and offshore oil industry operations [40]- [41]. Precision
landmark-based localization, navigation, and reacquisition as
well as 3-D reconstruction, modeling and mapping are some
robot capabilities that require the recovery of quantitative 3-D
scene information from 2-D optical images in relatively clear
waters. Alternatively, 3-D reconstruction methods based solely
on sonar data may be applied in turbid waters; e.g., [1]-
[51, [151, [17], [19], [24], [34]- [36]. More importantly, key
advantages are achieved in multi-modal opti-acoustic stereo
imaging by the integration of optical and sonar visual cues,
where the extraction of dense prominent features is hindered
by increased turbidity, but is still feasible to identify a handful
of sparse features, locate structural features (edges), and (or)
detect occluding contours; e.g., [10], [25]- [28].

In deploying RGB cameras for monocular and stereo vision,
the internal calibration establishes the relationship between
image measurements and various 3-D scene properties.

This work was supported by USDA NIFA sustainable agriculture system
program under award number 20206801231805.

Moreover, where available, measurements from a 2-D
forward-look sonar with known pose relative to the RGB
camera(s) can be integrated for improved robustness and
accuracy. For underwater deployment, some optical cameras
utilize a waterproof housing with a flat transparent glass
port. This leads to the deviation from the ideal perspective
projection model; nonlinear refraction of optical rays at the
interface occur due to variation of light speed through various
media, namely, the air, glass and water [6], [11], [14], [22],
[31], [32]. Here, the rays bend towards the surface normal,
when entering a denser medium at the interface. Equivalently,
the pin-hole camera model with a single projection center
(SPC) — where optical rays from the scene to the camera
intersect — is invalidated. To address, non-SPC ray tracing
methods have been proposed for the calibration of monocular,
stereo, and projector-camera system in support of structured
light methods; e.g., [33].

In this work, some RGB data come from a single Sony
camera in a glass dome, with no/minimal diffraction. Here,
we have successfully applied the standard SPC model for
intrinsic calibration. However, we also utilize data recorded
with two GoPro cameras in stereo configuration, each enclosed
in a water-proof housing with a flat glass port. Thus, the
scene-to-image projection deviates from the SPC model; see
Fig. 1(b) for a sample stereo pair of a grid of metal reflectors,
also employed for opti-acoustic stereo calibration [26], [37].
Here, we apply a ray tracing scheme for intrinsic calibration,
traditional extrinsic calibration for the GoPro stereo system,
and opti-acoustic calibration [26] to determine the pose relative
to an Oculus sonar [42]. These allow us to exploit the visual
cues in optical and sonar data; see Fig. | (b). The data from the
calibrated optical and opti-acoustic stereo imaging system are
utilized to explore the application and to assess performance
in selected 3-D reconstruction techniques.

It is noted that this paper covers several topics incorporated
in an elective graduate course (Underwater Robot Perception),
in the Maryland Applied Graduate Engineering (MAGE)
program [43] '. Moreover, experiments are presented for
3-D scene reconstruction from overlapping GoPro and Oculus
images, similar to those carried out in regular and term

I'This elective course was designed and offered in Sring’24 semester during
a sabbatical leave of the first author, as a Visiting Professor in the Department
of Mechanical Engineering, University of Maryland, College Park, MD.
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Fig. 1. (a): Rectifying perfect grid in GoPro dat yielding distorted
left and right image grids; (b) sample GoPro stereo pair (pair 3 in
Fig 2) and Oculus sonar image used in opti-acoustic calibration.

projects with images chosen by individual students. These
compare the accuracy in 3-D terrain and target reconstruction
by single-/dual-modality stereo imaging, and explore how and
if the single-image haze removal by dark channel prior [16]
may be improved by exploiting these solutions, namely, to
calculate the transmission field and airlight more effectively.
Our results and analysis sheds light on various scenarios where
the methods presented here may improve autonomy in the
operation of underwater robots.

In the remaining sections, technical background on GoPro
calibration and multi-view reconstruction is presented in
section II. Experimental results for various methods are given
in section III. The summary, conclusions and future efforts are
provided in Section IV.

II. TECHNICAL BACKGROUND
A. Calibration

Deployment of cameras for underwater scene/object
reconstruction calls for the treatment of refraction at various
air, glass and water interfaces, e.g., [32]. The so-called
refractive structure-from-motion techniques directly model the
impact on the epipolar geometry in two views; e.g., [12],
[20], [21], [29]. However, general applications calls for the
calibration of 3D-to-2D projection geometry by ray tracing
[6], [11], [14], [22], [31]. These include but is not limited
to 3-D reconstruction by multi-modal stereo imaging with a
forward-look sonar (having overlapping view), structured light
stereo [33], and the likes.

We follow the commonly adopted approach where each
pixel is assigned an incident ray direction in 3-D space. While
an axial camera model with two air-glass and glass-water
interfaces has been assumed [22], our experimental results
confirm that simplified computations by ignoring the relatively

2000

L:image:2 maxerr=15.2

2500

3000 |

4000 3

- 500 320
2000 3000 4000 5000 6000 o 1000 2000 3000 4000 5000 1000 2000 3000 4000

L:image:3 =7.3
2000 image:3 maxerr="

L: image:4 maxerr=14.9 R: image:4 maxerr=19.2
g 2000 e

2000 2000
22004 %

2400 %,

3500 . 1
1000 2000 3000 4000 5000 [

3200 3200

2000 2500 3000 3500 4000 1000 2000 8000 4000 1000 2000 3000 4000

L: image:5 maxerr=15.5 R:image:5 maxerr=13.0 L: image:6 maxerr=11.2 R: image:6 maxerr=22.0

2000

2000

2000
2200 gl 2200} mameuess 2200 |
2500 | 2400 SEitbeen @ 2400 | : 2400 |

2600 oL 26001 2% 2600 |

3000 oo {2800 . 2800 (50 2800 |
3000 s ®a e 30004 5 4 o o L 3000 |

S 3200 z 3200

3500
2000 3000 4000 2000 3000 4000 5000 1000 2000 3000 4000

N 3200
1000 2000 3000 4000 5000 1000

Fig. 2. Data (red circles) and reprojected calibration grid points
(blue crosses) based on calibration of two GoPro cameras in stereo
configuration with maximum discrepancy of 23.8 pixels.

thin glass layer of about 2.5 [mm] has negligible impact on
the calibration accuracy. Accordingly, we express each optical
ray by the simplified model [21], [33].

P, = (cosy' —1/tcosy)a+ 1/t P; (1)

where v and +' are the angles of the so-called entering
(air side) and existing (water side) rays at the interface, ¢
is the relative water-to-air refraction index, n is the optical
axis (perpendicular to the interface) , and Pz and f’o =
P,/|P,| are unit vectors along the entering and existing ray
directions. The entering ray direction P; = (zq/fz, ya/fy, 1)
is expressed in terms of the displaced image position x; =
(x4,yq) (by lens distortion), normalized by the focal lengths
fz and f, in pixel units in the = and y directions, respectively.
Alternatively, we utilize the ideal image positions x = (z,y)
after lens distortion correction, according to the distortion
model:

xq = (1 + kyr? 4 kort)x+ (2p1 zy + pa(r? + 227)
1 ay +pa(r” +207) 5 ()

2 T—T 2 Y=y 2
= (T) + (T)

Finally, a 3-D point P,. projecting onto an image point X can
be parameterized by the distance § along the existing ray:

P,=dP,+ 3P, (3)

where the distance d from the lens to the glass port is
determined by calibration.

We utilize the same planar grid of acoustic reflectors at
a number of distinct poses for calibrating the GoPro and
opti-acoustic stereo imaging systems; see Fig. 1(b).

B. Multi-View Reconstruction

Traditional reconstruction with a calibrated stereo system
involves determining depth Z by triangulation using the



projection rays of correspondences x; = (zy,y;) and
x, = (zr,y,) in the left and right images. Applying (3)
to the rectfied stereo configuration leads to a closed-form
least-squares solution for the distances {f;, 3.} along the
exiting rays {Pol, Por}:

<]§)0Tz]§3ol ]E’le?ar)<ﬁl)( dz(f:fl(Pil -P;)+ f’;{lt >
Pia PP \3) T\ (B Py P - Pl
where t is the baseline of the rectified stereo images.

For 3-D reconstruction from multi-modal opti-acoustic data,
we note that the sonar image position x; = R(siné, cos @)
is expressed in terms of the range R and azimuth 6
measurements, namely, two of the three spherical coordinates
(R, 0, ¢) of a 3-D point P, = R(sin 6 cos ¢, cos  cos ¢, sin @)
in the sonar coordinate system. The 3-D point is located
on a circular arc defined by the beam in the azimuthal
direction 6 at distance $ from the sonar. Moreover, only the
segment within the narrow vertical beam width |¢| < ®max is
relevant ; ®max = [3° — 7°] for most existing high-frequency
forward-look imaging systems.

In a calibrated opti-acoustic system, the 3-D point Py in
the sonar coordinate system can be expressed in terms of
the rotation matrix R,s = (r1;re;r3) (with rows r;) and
translation t,s = (t,t,,t.)" of the Oculus sonar coordinate
system:

Ps - RosPr + tos (5)
Given the opti-acoustic correspondences X, =
R(sinf,cosf) and x = (x,y), a simplified solution fo

the depth Z of a 3-D point in the optical coordinate system
is the smaller/positive of the two intersections of the optical
ray with the sonar range sphere:

(P, P)Z? + 261 RoP)Z — (R? —tos - tos) =0 (6)

Alternatively, a unique solution is derived by the intersection
with the azimuth plane:
g tandt, —t, 7
(r1 — tanfrs) - P,
In practice, we utilize the solution that minimizes the weighted
reprojection errors in the two images [26].

When operating near the seabed, it is often feasible to
identify a minimum of three small non-collinear bottom
features in the RGB image, even in the presence of some haze.
We may apply the epipolar constraint to identify the matching
points (generally a small highlight) in the sonar image
[25]. Consequently, we determine the 3-D coordinates of the
corresponding scene features by opti-acoustic triangulation
[26]. For a a relatively flat sea floor, these are sufficient to
compute a plane model, which has several useful applications.
For example, we can overcome a severe bottleneck in
optical-image haze removal that requires the estimation of
the transmission field and airlight, generally using the dark
pixels in color channels; e.g., [16] (hereby referred to as the
HST method). Unfortunately, the transmission field cannot
be estimated reliably when the dark-channel assumptions

are violated by some scene objects, near-field backscatter
with artificial lighting in deep waters, sun flicker in shallow
waters, and the likes. Using the seafloor plane model, we can
reconstruct any bottom feature in 3-D; by the intersection
of optical/sonar projection ray/arc with the seafloor plane.
Finally, we can calculate the range/depth of the entire seafloor
region, using which the optical image can be dehazed more
effectively.

Alternatively, we can reconstruct the 3-D occluding contours
of diffuse seafloor objects from their cast shadows on
the bottom surface; e.g., [9]. Moreover, if range varies
monotonically over the object surface, ensuring a one-to-one
correspondence between pixels within the object image
region and corresponding 3-D surface patches, the backscatter
measurements can be employed to build a 3-D object model
(based on the shape-from-shading paradigm) [8], [18].

III. EXPERIMENTS

The calibration of the GoPro stereo imaging system yields
the focal lengths, image centers, aspect ratios, lens distortion
parameters, and an estimate of effective air-layer thickness
within the camera housing, before the diffraction at the
interface. Fig. 2 depicts the grid positions (red circles) in six
stereo pairs, the reprojection of known 3-D grid points based
on calibration parameters (blue crosses), and the maximum
errors (discrepancy between reprojected points and the data).
Here, the largest error of 23.8 pixels (in a 4872x 5568 image)
represents a maximum error of less than 0.5%. Moreover, the
stereo baseline of about 18 [cm] is of interest in assessing
the 3-D reconstruction accuracy for the target ranges in
our experiments. These are presented next to assess the
reconstruction accuracy using the calibrated GoPro stereo
system, as well as the opti-acoustic stereo imaging system
with some of its key advantages.

Fig. 3 depicts two scenes comprising of rocks of various
sizes on the bottom of a textured indoor pool. The top row
includes both original and rectified (and dehazed) GoPro
stereo images (using calibration results and the HST method
[16]). The 3-D plot (bottom-right) shows the reconstruction
of selected feature matches in the GoPro stereo images, both
from the bottom surface and on various rocks.

For about 30 points on the bottom plane in the first scene,
(indexed in white color), the plane fitting error in the bottom
left of Fig. 3 gives a maximum distance of about 2 [cm] from
the plane. Only points 2 and 18 on the bottom surface (colored
in red, on both sides of the top right rock) have a plane fitting
error of larger than 2 cm. The remaining 38 features (indexed
in red color) correspond to points on various rocks, from about
5 [em] to 25 [cm] in height. For example, the height (elevation
above the seafloor) of point 47 (on the top middle rock) can
be determined from the plane fitting error of nearly 5 [cm] .

The second error plot in the bottom left of Fig. 3 is the
3-D reconstruction error, namely the distance between the left
and right projection rays at the estimated 3-D points; based on
computed 3; and 3, from (4). Roughly 10% of the points have
the largest error of just over 2 [cm] (mainly in Y direction),
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Fig. 3. Two different scenes with original GoPro stereo images, the rectified and dehazed images, and certain feature matches in rectified
GoPro stereo data with their 3-D reconstructions. Bottom left are the plane fitting error for all features, and the X, Y and Z components
of 3-D reconstruction errors.
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Fig. 4. Second scene in previous figure with corresponding Oculus
sonar image, and selected opti-acoustic matches used for 3-D
reconstruction, to compare with GoPro Stereo reconstruction from
previous figure. Good correspondence is noted from X Z views.

in part due to the localization errors of the left and right
matches, and in part for the imperfect calibration. Similar
results are obtained for the second scene, with only 24 bottom
features from a total of 43 matched features. As an example,
the estimated height of 30 [cm] (above the bottom) for two
points at nearly the top of the tallest rock (30 and 34) closely
matches the manual measurements on the object size.

In Fig. 4, the reconstruction is performed with a few
opti-acoustic correspondences. All the selected GoPro image
features lie on or near the occluding contour, thus matched
with the point at the intersection of the corresponding eipolar
line and the top boundary of the object highlight in the sonar
image. When the epipolar curve intersects multiple blobs,
the correct match can generally be identified by knowing the
approximate target range; e.g., by utilizing the plane equation,
i.e., assuming that the feature lies on the bottom surface.
Ambiguities in matching arise primarily when the other blob(s)
lie within a very short distance from the true corresponding
object. The clusters of reconstructed 3-D points on 4 different
objects (and their X Z projections) are in good agreement
with the reconstructions from the GoPro stereo data. Here,
exact differences have not been calculated since the features
for opti-acoustic reconstruction on (or near the occluding
contours) are not the same as those automatically matched
in the GoPro data.

The high accuracy of reconstructed points, albeit sparse,
enables obstacle detection and collision avoidance. Moreover,
applying the method in [10], an accurate dense range map
can be computed uisng the 3-D points both on the bottom
surface and the occluding contours of various objects. This
method applies an MRF-based statistical framework, where
the image intensities and known range values of reconstructed
points serve as observation and hidden variables, and the
opti-acoustic epipolar geometry guides the inference of the
MREF by refining the neighborhood pixels.

Fig. 5 is an example of a different scene, comprising of a
large number of small bottom features. Here, the first 3-D view
has been selected to discriminate between the bottom features
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Fig. 5. Selected features in the optical image, corresponding sonar
matches along epipolar curves, and 3-D reconstruction. Top 3-D plane
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Fig. 6. (a) Estimation of bottom plane normal n = (ng,ny,n.)
using N = 3, 4, ..., 10 random bottom features, averaged
over 50 samples. Color bars are the average, and black extensions
show one standard deviation from the mean. Dashed lines are the
estimated normal components using all bottom features. Results
confirm accuracy of estimated 3-D bottom features and plane model,
with little variations in the solution with as few as 5 points used to
estimate plane equation.

and those on 3-D rocks. Most of the estimated 3-D object
sizes are within small errors of manual measurements. For
test of accuracy, we have estimated the bottom plane normal
n = (ngy,ny,n;) from N =3, 4, ..., 10 bottom features,
averaged over 50 random samples. Varying N, the mean and
standard deviation of the estimates are plotted in Fig. 6. Here,
each color bar represents the mean estimate of one component

of n, and the black extensions show one standard deviation
from the mean. It is noted that the standard deviations become
negligible with as few as IV = 5 features, confirming the high
accuracy of 3-D bottom feature positions.

Referring to Fig. 7, we explore another application for the
computed bottom plane model, which allows us to generate
a depth map for the entire scene, depicted in (b). Despite
the good visibility in the pool, some (commonly-encountered)
scene characteristics are helpful in demonstrating some key
deficiencies of single-image haze removal techniques that
utilize dark channel prior; e.g., the HST method [16]. Here,
the computations of airlight and transmission map in (d) are
adversely impacted by the sun flicker (common in shallow
waters) for the localization of haze-opaque pixels and the tiled
black lines forming the dark pixels. This leads to the color
distortion in the near field and less effective haze removal
throughout the image; see (e). In contrast, the more balanced
enhanced image in (c) employs the depth map in (b) for the
transmission map and airlight computations.

In the next two columns of Fig. 7, we make use of the
images of a tank scene, under two different turbidity levels.
Here, the dark scene is illuminated non-uniformly by the
deployment of a light source next to the camera. The enhanced
image in (c) makes use of the estimated depth map in (b)
based on the bottom plane model. For the HST method,
the incorrect illumination-induced diagonal gradient in the
transmission map in (d) and the white PVC cylinder as the
haze-opaque region lead to the exaggerated adjustment within
the central part of the image in (e) .

As our last example in utilizing the planar terrain depth
map, we explore the reconstruction of three 3-D targets
from backscatter cues [8], in analogy with the shape from
shading paradigm [18]; see Fig. 8. This requires a one-to-one
mapping from a local 3-D surface patch to an image pixel,
which is achieved where the range over the surface varies
monotonically in some direction. To start, the planar bottom
model establishes the boundary conditions on the elevation
angles at a frontal edge (comprising of points at closest range
along various sonar beams) and occluding contour(s) of these
objects. The two small rocks satisfy the stated condition when
the long side is aligned with the sonar viewing axis. For these
objects, the reconstruction closely follows each object shape.
In contrast, the condition is violated for the concave blade
coral, leading to a highly inaccurate 3-D object model.

IV. SUMMARY, CONCLUSIONS AND FUTURE EFFORTS

This paper explores the role of RGB and forward-look
sonar imaging for terrain and 3-D object modeling, enhancing
visual information in RGB images, and detecting obstacles for
collision-free navigation. To deploy low-cost GoPro (stereo)
cameras within their water-proof housings for quantitative
measurements, we have applied a ray-tracing technique for
intrinsic/extrinsic stereo calibration. We have also established
the pose relative to a Oculus sonar for multi-modal
opti-acoustic stereo imaging.



Fig. 7. (a) Original images of a pool scene (left column) and a
water tank scene at two different turbidity levels (middle and right
columns); (b) range map determined from bottom plane equation
using 3-D positions of 3 bottom features matched in opti-acoustic
stereo pairs; (c) enhanced images using estimated range map; (d)
transmission filed from HST method; (e) enhanced image using dark
channel (HST method [16].

Fig. 8. Reconstruction of two small rocks, for which depth varies
monotonically, and a (blue-green) concave blade coral for which
multiple surface patches on each beam are located at same range,
thus contributing to the measurements at the same pixel.

The Go-Pro calibration accuracy has been assessed based
on the maximum reprojection error of 23.8 [pix] in a 25Mpix
image (max. error of roughly 0.5%). We have also achieved
a 3-D reconstruction error of no more than about 2 [cm] at
average depth of about 1 [m] with a stereo baseline of 18

[cm]. The precision in opti-acoustic stereo calibration may
be assessed by the estimated epipolar contours over the field
of view. That is, selected object features on the occluding
contour of an object in one modality yields an epipolar contour
passing through the occluding contour of the matching object
at roughly the same relative position. In particular, many
selected scene objects (small rocks) have a relatively narrow
extent horizontally, facilitating the proper assessment; i.e., with
inaccurate calibration, the epipolar contour may completely
miss the matching object.

Some of our data, captured with the GoPro stereo cameras
and an Oculus sonar have produced consistent estimates of
target distances based on both binocular and opti-acoustic
stereo cues. We have also demonstrated some applications for
the estimation of a flat terrain model: to employ a relatively
accurate depth map over the scene to improve the transmission
map computation for haze removal, and to determine 3-D
object models from intensity (backscatter) measurements. For
the latter, the flat bottom model establishes the boundary
conditions on the elevation angles of the frontal edge and
occluding contour(s) of the object resting on the bottom
surface.

Underwater robot perception in attracting more attention
and in particular FL. sonar image processing and interpretation
is become more widely researched. In this paper, we have
covered roughly half of the technical contents in a first-time
graduate course on marine robot perception at the University
of Maryland Applied Graduate Engineering (MAGE) program,
all verified and assessed through the experiments with real
data. Wide adoption (fully or in part) within graduate marine
robotics curricula would be instrumental in educating future
researchers that are highly trained with strong technical
knowledge in optical and sonar data processing.
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